Paper ID: 2406.03231
Empowering Safe Reinforcement Learning for Power System Control with CommonPower
Michael Eichelbeck, Hannah Markgraf, Matthias Althoff
The growing complexity of power system management has led to an increased interest in reinforcement learning (RL). However, vanilla RL controllers cannot themselves ensure satisfaction of system constraints. Therefore, combining them with formally correct safeguarding mechanisms is an important aspect when studying RL for power system management. Integrating safeguarding into complex use cases requires tool support. To address this need, we introduce the Python tool CommonPower. CommonPower's unique contribution lies in its symbolic modeling approach, which enables flexible, model-based safeguarding of RL controllers. Moreover, CommonPower offers a unified interface for single-agent RL, multi-agent RL, and optimal control, with seamless integration of different forecasting methods. This allows users to validate the effectiveness of safe RL controllers across a large variety of case studies and investigate the influence of specific aspects on overall performance. We demonstrate CommonPower's versatility through a numerical case study that compares RL agents featuring different safeguards with a model predictive controller in the context of building energy management.
Submitted: Jun 5, 2024