Paper ID: 2406.03683

Bayesian Power Steering: An Effective Approach for Domain Adaptation of Diffusion Models

Ding Huang, Ting Li, Jian Huang

We propose a Bayesian framework for fine-tuning large diffusion models with a novel network structure called Bayesian Power Steering (BPS). We clarify the meaning behind adaptation from a \textit{large probability space} to a \textit{small probability space} and explore the task of fine-tuning pre-trained models using learnable modules from a Bayesian perspective. BPS extracts task-specific knowledge from a pre-trained model's learned prior distribution. It efficiently leverages large diffusion models, differentially intervening different hidden features with a head-heavy and foot-light configuration. Experiments highlight the superiority of BPS over contemporary methods across a range of tasks even with limited amount of data. Notably, BPS attains an FID score of 10.49 under the sketch condition on the COCO17 dataset.

Submitted: Jun 6, 2024