Paper ID: 2406.04153

Learned Feature Importance Scores for Automated Feature Engineering

Yihe Dong, Sercan Arik, Nathanael Yoder, Tomas Pfister

Feature engineering has demonstrated substantial utility for many machine learning workflows, such as in the small data regime or when distribution shifts are severe. Thus automating this capability can relieve much manual effort and improve model performance. Towards this, we propose AutoMAN, or Automated Mask-based Feature Engineering, an automated feature engineering framework that achieves high accuracy, low latency, and can be extended to heterogeneous and time-varying data. AutoMAN is based on effectively exploring the candidate transforms space, without explicitly manifesting transformed features. This is achieved by learning feature importance masks, which can be extended to support other modalities such as time series. AutoMAN learns feature transform importance end-to-end, incorporating a dataset's task target directly into feature engineering, resulting in state-of-the-art performance with significantly lower latency compared to alternatives.

Submitted: Jun 6, 2024