Paper ID: 2406.04346
Automating Patch Set Generation from Code Review Comments Using Large Language Models
Tajmilur Rahman, Rahul Singh, Mir Yousuf Sultan
The advent of Large Language Models (LLMs) has revolutionized various domains of artificial intelligence, including the realm of software engineering. In this research, we evaluate the efficacy of pre-trained LLMs in replicating the tasks traditionally performed by developers in response to code review comments. We provide code contexts to five popular LLMs and obtain the suggested code-changes (patch sets) derived from real-world code-review comments. The performance of each model is meticulously assessed by comparing their generated patch sets against the historical data of human-generated patch-sets from the same repositories. This comparative analysis aims to determine the accuracy, relevance, and depth of the LLMs' feedback, thereby evaluating their readiness to support developers in responding to code-review comments. Novelty: This particular research area is still immature requiring a substantial amount of studies yet to be done. No prior research has compared the performance of existing Large Language Models (LLMs) in code-review comments. This in-progress study assesses current LLMs in code review and paves the way for future advancements in automated code quality assurance, reducing context-switching overhead due to interruptions from code change requests.
Submitted: Apr 10, 2024