Paper ID: 2406.04842

3rd Place Solution for MeViS Track in CVPR 2024 PVUW workshop: Motion Expression guided Video Segmentation

Feiyu Pan, Hao Fang, Xiankai Lu

Referring video object segmentation (RVOS) relies on natural language expressions to segment target objects in video, emphasizing modeling dense text-video relations. The current RVOS methods typically use independently pre-trained vision and language models as backbones, resulting in a significant domain gap between video and text. In cross-modal feature interaction, text features are only used as query initialization and do not fully utilize important information in the text. In this work, we propose using frozen pre-trained vision-language models (VLM) as backbones, with a specific emphasis on enhancing cross-modal feature interaction. Firstly, we use frozen convolutional CLIP backbone to generate feature-aligned vision and text features, alleviating the issue of domain gap and reducing training costs. Secondly, we add more cross-modal feature fusion in the pipeline to enhance the utilization of multi-modal information. Furthermore, we propose a novel video query initialization method to generate higher quality video queries. Without bells and whistles, our method achieved 51.5 J&F on the MeViS test set and ranked 3rd place for MeViS Track in CVPR 2024 PVUW workshop: Motion Expression guided Video Segmentation.

Submitted: Jun 7, 2024