Paper ID: 2406.06474

Towards a Personal Health Large Language Model

Justin Cosentino, Anastasiya Belyaeva, Xin Liu, Nicholas A. Furlotte, Zhun Yang, Chace Lee, Erik Schenck, Yojan Patel, Jian Cui, Logan Douglas Schneider, Robby Bryant, Ryan G. Gomes, Allen Jiang, Roy Lee, Yun Liu, Javier Perez, Jameson K. Rogers, Cathy Speed, Shyam Tailor, Megan Walker, Jeffrey Yu, Tim Althoff, Conor Heneghan, John Hernandez, Mark Malhotra, Leor Stern, Yossi Matias, Greg S. Corrado, Shwetak Patel, Shravya Shetty, Jiening Zhan, Shruthi Prabhakara, Daniel McDuff, Cory Y. McLean

In health, most large language model (LLM) research has focused on clinical tasks. However, mobile and wearable devices, which are rarely integrated into such tasks, provide rich, longitudinal data for personal health monitoring. Here we present Personal Health Large Language Model (PH-LLM), fine-tuned from Gemini for understanding and reasoning over numerical time-series personal health data. We created and curated three datasets that test 1) production of personalized insights and recommendations from sleep patterns, physical activity, and physiological responses, 2) expert domain knowledge, and 3) prediction of self-reported sleep outcomes. For the first task we designed 857 case studies in collaboration with domain experts to assess real-world scenarios in sleep and fitness. Through comprehensive evaluation of domain-specific rubrics, we observed that Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant improvements in using relevant domain knowledge and personalizing information for sleep insights. We evaluated PH-LLM domain knowledge using multiple choice sleep medicine and fitness examinations. PH-LLM achieved 79% on sleep and 88% on fitness, exceeding average scores from a sample of human experts. Finally, we trained PH-LLM to predict self-reported sleep quality outcomes from textual and multimodal encoding representations of wearable data, and demonstrate that multimodal encoding is required to match performance of specialized discriminative models. Although further development and evaluation are necessary in the safety-critical personal health domain, these results demonstrate both the broad knowledge and capabilities of Gemini models and the benefit of contextualizing physiological data for personal health applications as done with PH-LLM.

Submitted: Jun 10, 2024