Paper ID: 2406.07107
Agnostic Sharpness-Aware Minimization
Van-Anh Nguyen, Quyen Tran, Tuan Truong, Thanh-Toan Do, Dinh Phung, Trung Le
Sharpness-aware minimization (SAM) has been instrumental in improving deep neural network training by minimizing both the training loss and the sharpness of the loss landscape, leading the model into flatter minima that are associated with better generalization properties. In another aspect, Model-Agnostic Meta-Learning (MAML) is a framework designed to improve the adaptability of models. MAML optimizes a set of meta-models that are specifically tailored for quick adaptation to multiple tasks with minimal fine-tuning steps and can generalize well with limited data. In this work, we explore the connection between SAM and MAML in enhancing model generalization. We introduce Agnostic-SAM, a novel approach that combines the principles of both SAM and MAML. Agnostic-SAM adapts the core idea of SAM by optimizing the model toward wider local minima using training data, while concurrently maintaining low loss values on validation data. By doing so, it seeks flatter minima that are not only robust to small perturbations but also less vulnerable to data distributional shift problems. Our experimental results demonstrate that Agnostic-SAM significantly improves generalization over baselines across a range of datasets and under challenging conditions such as noisy labels or data limitation.
Submitted: Jun 11, 2024