Paper ID: 2406.07685

Test-Time Fairness and Robustness in Large Language Models

Leonardo Cotta, Chris J. Maddison

Frontier Large Language Models (LLMs) can be socially discriminatory or sensitive to spurious features of their inputs. Because only well-resourced corporations can train frontier LLMs, we need robust test-time strategies to control such biases. Existing solutions, which instruct the LLM to be fair or robust, rely on the model's implicit understanding of bias. Causality provides a rich formalism through which we can be explicit about our debiasing requirements. Yet, as we show, a naive application of the standard causal debiasing strategy, counterfactual data augmentation, fails under standard assumptions to debias predictions at an individual level at test time. To address this, we develop a stratified notion of debiasing called stratified invariance, which can capture a range of debiasing requirements from population level to individual level through an additional measurement that stratifies the predictions. We present a complete observational test for stratified invariance. Finally, we introduce a data augmentation strategy that guarantees stratified invariance at test time under suitable assumptions, together with a prompting strategy that encourages stratified invariance in LLMs. We show that our prompting strategy, unlike implicit instructions, consistently reduces the bias of frontier LLMs across a suite of synthetic and real-world benchmarks without requiring additional data, finetuning or pre-training.

Submitted: Jun 11, 2024