Paper ID: 2406.07926
Efficient Neural Common Neighbor for Temporal Graph Link Prediction
Xiaohui Zhang, Yanbo Wang, Xiyuan Wang, Muhan Zhang
Temporal graphs are ubiquitous in real-world scenarios, such as social network, trade and transportation. Predicting dynamic links between nodes in a temporal graph is of vital importance. Traditional methods usually leverage the temporal neighborhood of interaction history to generate node embeddings first and then aggregate the source and target node embeddings to predict the link. However, such methods focus on learning individual node representations, but overlook the pairwise representation learning nature of link prediction and fail to capture the important pairwise features of links such as common neighbors (CN). Motivated by the success of Neural Common Neighbor (NCN) for static graph link prediction, we propose TNCN, a temporal version of NCN for link prediction in temporal graphs. TNCN dynamically updates a temporal neighbor dictionary for each node, and utilizes multi-hop common neighbors between the source and target node to learn a more effective pairwise representation. We validate our model on five large-scale real-world datasets from the Temporal Graph Benchmark (TGB), and find that it achieves new state-of-the-art performance on three of them. Additionally, TNCN demonstrates excellent scalability on large datasets, outperforming popular GNN baselines by up to 6.4 times in speed. Our code is available at https: //github.com/GraphPKU/TNCN.
Submitted: Jun 12, 2024