Paper ID: 2406.08771

MFF-EINV2: Multi-scale Feature Fusion across Spectral-Spatial-Temporal Domains for Sound Event Localization and Detection

Da Mu, Zhicheng Zhang, Haobo Yue

Sound Event Localization and Detection (SELD) involves detecting and localizing sound events using multichannel sound recordings. Previously proposed Event-Independent Network V2 (EINV2) has achieved outstanding performance on SELD. However, it still faces challenges in effectively extracting features across spectral, spatial, and temporal domains. This paper proposes a three-stage network structure named Multi-scale Feature Fusion (MFF) module to fully extract multi-scale features across spectral, spatial, and temporal domains. The MFF module utilizes parallel subnetworks architecture to generate multi-scale spectral and spatial features. The TF-Convolution Module is employed to provide multi-scale temporal features. We incorporated MFF into EINV2 and term the proposed method as MFF-EINV2. Experimental results in 2022 and 2023 DCASE challenge task3 datasets show the effectiveness of our MFF-EINV2, which achieves state-of-the-art (SOTA) performance compared to published methods.

Submitted: Jun 13, 2024