Paper ID: 2406.10087
Biomarker based Cancer Classification using an Ensemble with Pre-trained Models
Chongmin Lee, Jihie Kim
Certain cancer types, namely pancreatic cancer is difficult to detect at an early stage; sparking the importance of discovering the causal relationship between biomarkers and cancer to identify cancer efficiently. By allowing for the detection and monitoring of specific biomarkers through a non-invasive method, liquid biopsies enhance the precision and efficacy of medical interventions, advocating the move towards personalized healthcare. Several machine learning algorithms such as Random Forest, SVM are utilized for classification, yet causing inefficiency due to the need for conducting hyperparameter tuning. We leverage a meta-trained Hyperfast model for classifying cancer, accomplishing the highest AUC of 0.9929 and simultaneously achieving robustness especially on highly imbalanced datasets compared to other ML algorithms in several binary classification tasks (e.g. breast invasive carcinoma; BRCA vs. non-BRCA). We also propose a novel ensemble model combining pre-trained Hyperfast model, XGBoost, and LightGBM for multi-class classification tasks, achieving an incremental increase in accuracy (0.9464) while merely using 500 PCA features; distinguishable from previous studies where they used more than 2,000 features for similar results.
Submitted: Jun 14, 2024