Paper ID: 2406.10528

Memory Faults in Activation-sparse Quantized Deep Neural Networks: Analysis and Mitigation using Sharpness-aware Training

Akul Malhotra, Sumeet Kumar Gupta

Improving the hardware efficiency of deep neural network (DNN) accelerators with techniques such as quantization and sparsity enhancement have shown an immense promise. However, their inference accuracy in non-ideal real-world settings (such as in the presence of hardware faults) is yet to be systematically analyzed. In this work, we investigate the impact of memory faults on activation-sparse quantized DNNs (AS QDNNs). We show that a high level of activation sparsity comes at the cost of larger vulnerability to faults, with AS QDNNs exhibiting up to 11.13% lower accuracy than the standard QDNNs. We establish that the degraded accuracy correlates with a sharper minima in the loss landscape for AS QDNNs, which makes them more sensitive to perturbations in the weight values due to faults. Based on this observation, we employ sharpness-aware quantization (SAQ) training to mitigate the impact of memory faults. The AS and standard QDNNs trained with SAQ have up to 19.50% and 15.82% higher inference accuracy, respectively compared to their conventionally trained equivalents. Moreover, we show that SAQ-trained AS QDNNs show higher accuracy in faulty settings than standard QDNNs trained conventionally. Thus, sharpness-aware training can be instrumental in achieving sparsity-related latency benefits without compromising on fault tolerance.

Submitted: Jun 15, 2024