Paper ID: 2406.11193

MMNeuron: Discovering Neuron-Level Domain-Specific Interpretation in Multimodal Large Language Model

Jiahao Huo, Yibo Yan, Boren Hu, Yutao Yue, Xuming Hu

Projecting visual features into word embedding space has become a significant fusion strategy adopted by Multimodal Large Language Models (MLLMs). However, its internal mechanisms have yet to be explored. Inspired by multilingual research, we identify domain-specific neurons in multimodal large language models. Specifically, we investigate the distribution of domain-specific neurons and the mechanism of how MLLMs process features from diverse domains. Furthermore, we propose a three-stage mechanism for language model modules in MLLMs when handling projected image features, and verify this hypothesis using logit lens. Extensive experiments indicate that while current MLLMs exhibit Visual Question Answering (VQA) capability, they may not fully utilize domain-specific information. Manipulating domain-specific neurons properly will result in a 10% change of accuracy at most, shedding light on the development of cross-domain, all-encompassing MLLMs in the future. The source code is available at this https URL.

Submitted: Jun 17, 2024