Paper ID: 2406.11774
Optimal Transport-Assisted Risk-Sensitive Q-Learning
Zahra Shahrooei, Ali Baheri
The primary goal of reinforcement learning is to develop decision-making policies that prioritize optimal performance without considering risk or safety. In contrast, safe reinforcement learning aims to mitigate or avoid unsafe states. This paper presents a risk-sensitive Q-learning algorithm that leverages optimal transport theory to enhance the agent safety. By integrating optimal transport into the Q-learning framework, our approach seeks to optimize the policy's expected return while minimizing the Wasserstein distance between the policy's stationary distribution and a predefined risk distribution, which encapsulates safety preferences from domain experts. We validate the proposed algorithm in a Gridworld environment. The results indicate that our method significantly reduces the frequency of visits to risky states and achieves faster convergence to a stable policy compared to the traditional Q-learning algorithm.
Submitted: Jun 17, 2024