Paper ID: 2406.11786
A Brief Survey on Leveraging Large Scale Vision Models for Enhanced Robot Grasping
Abhi Kamboj, Katherine Driggs-Campbell
Robotic grasping presents a difficult motor task in real-world scenarios, constituting a major hurdle to the deployment of capable robots across various industries. Notably, the scarcity of data makes grasping particularly challenging for learned models. Recent advancements in computer vision have witnessed a growth of successful unsupervised training mechanisms predicated on massive amounts of data sourced from the Internet, and now nearly all prominent models leverage pretrained backbone networks. Against this backdrop, we begin to investigate the potential benefits of large-scale visual pretraining in enhancing robot grasping performance. This preliminary literature review sheds light on critical challenges and delineates prospective directions for future research in visual pretraining for robotic manipulation.
Submitted: Jun 17, 2024