Paper ID: 2406.12645

Evaluating Evidence Attribution in Generated Fact Checking Explanations

Rui Xing, Timothy Baldwin, Jey Han Lau

Automated fact-checking systems often struggle with trustworthiness, as their generated explanations can include hallucinations. In this work, we explore evidence attribution for fact-checking explanation generation. We introduce a novel evaluation protocol, citation masking and recovery, to assess attribution quality in generated explanations. We implement our protocol using both human annotators and automatic annotators, and find that LLM annotation correlates with human annotation, suggesting that attribution assessment can be automated. Finally, our experiments reveal that: (1) the best-performing LLMs still generate explanations with inaccurate attributions; and (2) human-curated evidence is essential for generating better explanations. Code and data are available here: this https URL

Submitted: Jun 18, 2024