Paper ID: 2406.13232
Towards Robust Evaluation: A Comprehensive Taxonomy of Datasets and Metrics for Open Domain Question Answering in the Era of Large Language Models
Akchay Srivastava, Atif Memon
Open Domain Question Answering (ODQA) within natural language processing involves building systems that answer factual questions using large-scale knowledge corpora. Recent advances stem from the confluence of several factors, such as large-scale training datasets, deep learning techniques, and the rise of large language models. High-quality datasets are used to train models on realistic scenarios and enable the evaluation of the system on potentially unseen data. Standardized metrics facilitate comparisons between different ODQA systems, allowing researchers to objectively track advancements in the field. Our study presents a thorough examination of the current landscape of ODQA benchmarking by reviewing 52 datasets and 20 evaluation techniques across textual and multimodal modalities. We introduce a novel taxonomy for ODQA datasets that incorporates both the modality and difficulty of the question types. Additionally, we present a structured organization of ODQA evaluation metrics along with a critical analysis of their inherent trade-offs. Our study aims to empower researchers by providing a framework for the robust evaluation of modern question-answering systems. We conclude by identifying the current challenges and outlining promising avenues for future research and development.
Submitted: Jun 19, 2024