Paper ID: 2406.14086

Seg-LSTM: Performance of xLSTM for Semantic Segmentation of Remotely Sensed Images

Qinfeng Zhu, Yuanzhi Cai, Lei Fan

Recent advancements in autoregressive networks with linear complexity have driven significant research progress, demonstrating exceptional performance in large language models. A representative model is the Extended Long Short-Term Memory (xLSTM), which incorporates gating mechanisms and memory structures, performing comparably to Transformer architectures in long-sequence language tasks. Autoregressive networks such as xLSTM can utilize image serialization to extend their application to visual tasks such as classification and segmentation. Although existing studies have demonstrated Vision-LSTM's impressive results in image classification, its performance in image semantic segmentation remains unverified. Our study represents the first attempt to evaluate the effectiveness of Vision-LSTM in the semantic segmentation of remotely sensed images. This evaluation is based on a specifically designed encoder-decoder architecture named Seg-LSTM, and comparisons with state-of-the-art segmentation networks. Our study found that Vision-LSTM's performance in semantic segmentation was limited and generally inferior to Vision-Transformers-based and Vision-Mamba-based models in most comparative tests. Future research directions for enhancing Vision-LSTM are recommended. The source code is available from https://github.com/zhuqinfeng1999/Seg-LSTM.

Submitted: Jun 20, 2024