Paper ID: 2406.14399

How far are today's time-series models from real-world weather forecasting applications?

Tao Han, Song Guo, Zhenghao Chen, Wanghan Xu, Lei Bai

The development of Time-Series Forecasting (TSF) techniques is often hindered by the lack of comprehensive datasets. This is particularly problematic for time-series weather forecasting, where commonly used datasets suffer from significant limitations such as small size, limited temporal coverage, and sparse spatial distribution. These constraints severely impede the optimization and evaluation of TSF models, resulting in benchmarks that are not representative of real-world applications, such as operational weather forecasting. In this work, we introduce the WEATHER-5K dataset, a comprehensive collection of observational weather data that better reflects real-world scenarios. As a result, it enables a better training of models and a more accurate assessment of the real-world forecasting capabilities of TSF models, pushing them closer to in-situ applications. Through extensive benchmarking against operational Numerical Weather Prediction (NWP) models, we provide researchers with a clear assessment of the gap between academic TSF models and real-world weather forecasting applications. This highlights the significant performance disparity between TSF and NWP models by analyzing performance across detailed weather variables, extreme weather event prediction, and model complexity comparison. Finally, we summarise the result into recommendations to the users and highlight potential areas required to facilitate further TSF research. The dataset and benchmark implementation are available at: this https URL

Submitted: Jun 20, 2024