Paper ID: 2406.14678
Evaluating Contextualized Representations of (Spanish) Ambiguous Words: A New Lexical Resource and Empirical Analysis
Pamela D. Rivière (1), Anne L. Beatty-Martínez (1), Sean Trott (1 and 2) ((1) Department of Cognitive Science UC San Diego, (2) Computational Social Science UC San Diego)
Lexical ambiguity -- where a single wordform takes on distinct, context-dependent meanings -- serves as a useful tool to compare across different language models' (LMs') ability to form distinct, contextualized representations of the same stimulus. Few studies have systematically compared LMs' contextualized word embeddings for languages beyond English. Here, we evaluate semantic representations of Spanish ambiguous nouns in context in a suite of Spanish-language monolingual and multilingual BERT-based models. We develop a novel dataset of minimal-pair sentences evoking the same or different sense for a target ambiguous noun. In a pre-registered study, we collect contextualized human relatedness judgments for each sentence pair. We find that various BERT-based LMs' contextualized semantic representations capture some variance in human judgments but fall short of the human benchmark. In exploratory work, we find that performance scales with model size. We also identify stereotyped trajectories of target noun disambiguation as a proportion of traversal through a given LM family's architecture, which we partially replicate in English. We contribute (1) a dataset of controlled, Spanish sentence stimuli with human relatedness norms, and (2) to our evolving understanding of the impact that LM specification (architectures, training protocols) exerts on contextualized embeddings.
Submitted: Jun 20, 2024