Paper ID: 2406.15229
ExDAG: Exact learning of DAGs
Pavel Rytíř, Aleš Wodecki, Jakub Mareček
There has been a growing interest in causal learning in recent years. Commonly used representations of causal structures, including Bayesian networks and structural equation models (SEM), take the form of directed acyclic graphs (DAGs). We provide a novel mixed-integer quadratic programming formulation and associated algorithm that identifies DAGs on up to 50 vertices, where these are identifiable. We call this method ExDAG, which stands for Exact learning of DAGs. Although there is a superexponential number of constraints that prevent the formation of cycles, the algorithm adds constraints violated by solutions found, rather than imposing all constraints in each continuous-valued relaxation. Our empirical results show that ExDAG outperforms local state-of-the-art solvers in terms of precision and outperforms state-of-the-art global solvers with respect to scaling, when considering Gaussian noise. We also provide validation with respect to other noise distributions.
Submitted: Jun 21, 2024