Paper ID: 2406.16224

From Text to Test: AI-Generated Control Software for Materials Science Instruments

Davi M Fébba, Kingsley Egbo, William A. Callahan, Andriy Zakutayev

Large language models (LLMs) are transforming the landscape of chemistry and materials science. Recent examples of LLM-accelerated experimental research include virtual assistants for parsing synthesis recipes from the literature, or using the extracted knowledge to guide synthesis and characterization. Despite these advancements, their application is constrained to labs with automated instruments and control software, leaving much of materials science reliant on manual processes. Here, we demonstrate the rapid deployment of a Python-based control module for a Keithley 2400 electrical source measure unit using ChatGPT-4. Through iterative refinement, we achieved effective instrument management with minimal human intervention. Additionally, a user-friendly graphical user interface (GUI) was created, effectively linking all instrument controls to interactive screen elements. Finally, we integrated this AI-crafted instrument control software with a high-performance stochastic optimization algorithm to facilitate rapid and automated extraction of electronic device parameters related to semiconductor charge transport mechanisms from current-voltage (IV) measurement data. This integration resulted in a comprehensive open-source toolkit for semiconductor device characterization and analysis using IV curve measurements. We demonstrate the application of these tools by acquiring, analyzing, and parameterizing IV data from a Pt/Cr$_2$O$_3$:Mg/$\beta$-Ga$_2$O$_3$ heterojunction diode, a novel stack for high-power and high-temperature electronic devices. This approach underscores the powerful synergy between LLMs and the development of instruments for scientific inquiry, showcasing a path for further acceleration in materials science.

Submitted: Jun 23, 2024