Paper ID: 2406.17112
Integrating Generative AI with Network Digital Twins for Enhanced Network Operations
Kassi Muhammad, Teef David, Giulia Nassisid, Tina Farus
As telecommunications networks become increasingly complex, the integration of advanced technologies such as network digital twins and generative artificial intelligence (AI) emerges as a pivotal solution to enhance network operations and resilience. This paper explores the synergy between network digital twins, which provide a dynamic virtual representation of physical networks, and generative AI, particularly focusing on Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). We propose a novel architectural framework that incorporates these technologies to significantly improve predictive maintenance, network scenario simulation, and real-time data-driven decision-making. Through extensive simulations, we demonstrate how generative AI can enhance the accuracy and operational efficiency of network digital twins, effectively handling real-world complexities such as unpredictable traffic loads and network failures. The findings suggest that this integration not only boosts the capability of digital twins in scenario forecasting and anomaly detection but also facilitates a more adaptive and intelligent network management system.
Submitted: Jun 24, 2024