Paper ID: 2406.17801
A multi-speaker multi-lingual voice cloning system based on vits2 for limmits 2024 challenge
Xiaopeng Wang, Yi Lu, Xin Qi, Zhiyong Wang, Yuankun Xie, Shuchen Shi, Ruibo Fu
This paper presents the development of a speech synthesis system for the LIMMITS'24 Challenge, focusing primarily on Track 2. The objective of the challenge is to establish a multi-speaker, multi-lingual Indic Text-to-Speech system with voice cloning capabilities, covering seven Indian languages with both male and female speakers. The system was trained using challenge data and fine-tuned for few-shot voice cloning on target speakers. Evaluation included both mono-lingual and cross-lingual synthesis across all seven languages, with subjective tests assessing naturalness and speaker similarity. Our system uses the VITS2 architecture, augmented with a multi-lingual ID and a BERT model to enhance contextual language comprehension. In Track 1, where no additional data usage was permitted, our model achieved a Speaker Similarity score of 4.02. In Track 2, which allowed the use of extra data, it attained a Speaker Similarity score of 4.17.
Submitted: Jun 22, 2024