Paper ID: 2406.18120
ArzEn-LLM: Code-Switched Egyptian Arabic-English Translation and Speech Recognition Using LLMs
Ahmed Heakl, Youssef Zaghloul, Mennatullah Ali, Rania Hossam, Walid Gomaa
Motivated by the widespread increase in the phenomenon of code-switching between Egyptian Arabic and English in recent times, this paper explores the intricacies of machine translation (MT) and automatic speech recognition (ASR) systems, focusing on translating code-switched Egyptian Arabic-English to either English or Egyptian Arabic. Our goal is to present the methodologies employed in developing these systems, utilizing large language models such as LLama and Gemma. In the field of ASR, we explore the utilization of the Whisper model for code-switched Egyptian Arabic recognition, detailing our experimental procedures including data preprocessing and training techniques. Through the implementation of a consecutive speech-to-text translation system that integrates ASR with MT, we aim to overcome challenges posed by limited resources and the unique characteristics of the Egyptian Arabic dialect. Evaluation against established metrics showcases promising results, with our methodologies yielding a significant improvement of $56\%$ in English translation over the state-of-the-art and $9.3\%$ in Arabic translation. Since code-switching is deeply inherent in spoken languages, it is crucial that ASR systems can effectively handle this phenomenon. This capability is crucial for enabling seamless interaction in various domains, including business negotiations, cultural exchanges, and academic discourse. Our models and code are available as open-source resources. Code: \url{http://github.com/ahmedheakl/arazn-llm}}, Models: \url{http://huggingface.co/collections/ahmedheakl/arazn-llm-662ceaf12777656607b9524e}.
Submitted: Jun 26, 2024