Paper ID: 2406.18192
Methodology of Adapting Large English Language Models for Specific Cultural Contexts
Wenjing Zhang, Siqi Xiao, Xuejiao Lei, Ning Wang, Huazheng Zhang, Meijuan An, Bikun Yang, Zhaoxiang Liu, Kai Wang, Shiguo Lian
The rapid growth of large language models(LLMs) has emerged as a prominent trend in the field of artificial intelligence. However, current state-of-the-art LLMs are predominantly based on English. They encounter limitations when directly applied to tasks in specific cultural domains, due to deficiencies in domain-specific knowledge and misunderstandings caused by differences in cultural values. To address this challenge, our paper proposes a rapid adaptation method for large models in specific cultural contexts, which leverages instruction-tuning based on specific cultural knowledge and safety values data. Taking Chinese as the specific cultural context and utilizing the LLaMA3-8B as the experimental English LLM, the evaluation results demonstrate that the adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values, while maintaining its original expertise advantages.
Submitted: Jun 26, 2024