Paper ID: 2406.18247

Generative artificial intelligence in ophthalmology: multimodal retinal images for the diagnosis of Alzheimer's disease with convolutional neural networks

I. R. Slootweg, M. Thach, K. R. Curro-Tafili, F. D. Verbraak, F. H. Bouwman, Y. A. L. Pijnenburg, J. F. Boer, J. H. P. de Kwisthout, L. Bagheriye, P. J. González

Background/Aim. This study aims to predict Amyloid Positron Emission Tomography (AmyloidPET) status with multimodal retinal imaging and convolutional neural networks (CNNs) and to improve the performance through pretraining with synthetic data. Methods. Fundus autofluorescence, optical coherence tomography (OCT), and OCT angiography images from 328 eyes of 59 AmyloidPET positive subjects and 108 AmyloidPET negative subjects were used for classification. Denoising Diffusion Probabilistic Models (DDPMs) were trained to generate synthetic images and unimodal CNNs were pretrained on synthetic data and finetuned on real data or trained solely on real data. Multimodal classifiers were developed to combine predictions of the four unimodal CNNs with patient metadata. Class activation maps of the unimodal classifiers provided insight into the network's attention to inputs. Results. DDPMs generated diverse, realistic images without memorization. Pretraining unimodal CNNs with synthetic data improved AUPR at most from 0.350 to 0.579. Integration of metadata in multimodal CNNs improved AUPR from 0.486 to 0.634, which was the best overall best classifier. Class activation maps highlighted relevant retinal regions which correlated with AD. Conclusion. Our method for generating and leveraging synthetic data has the potential to improve AmyloidPET prediction from multimodal retinal imaging. A DDPM can generate realistic and unique multimodal synthetic retinal images. Our best performing unimodal and multimodal classifiers were not pretrained on synthetic data, however pretraining with synthetic data slightly improved classification performance for two out of the four modalities.

Submitted: Jun 26, 2024