Paper ID: 2406.19532

Dataless Quadratic Neural Networks for the Maximum Independent Set Problem

Ismail Alkhouri, Cedric Le Denmat, Yingjie Li, Cunxi Yu, Jia Liu, Rongrong Wang, Alvaro Velasquez

Combinatorial Optimization (CO) addresses many important problems, including the challenging Maximum Independent Set (MIS) problem. Alongside exact and heuristic solvers, differentiable approaches have emerged, often using continuous relaxations of ReLU-based or quadratic objectives. Noting that an MIS in a graph is a Maximum Clique (MC) in its complement, we propose a new quadratic formulation for MIS by incorporating an MC term, improving convergence and exploration. We show that every maximal independent set corresponds to a local minimizer, derive conditions for the MIS size, and characterize stationary points. To solve our non-convex objective, we propose solving parallel multiple initializations using momentum-based gradient descent, complemented by an efficient MIS checking criterion derived from our theory. Therefore, we dub our method as parallelized Clique-Informed Quadratic Optimization for MIS (pCQO-MIS). Our experimental results demonstrate the effectiveness of the proposed method compared to exact, heuristic, sampling, and data-centric approaches. Notably, our method avoids the out-of-distribution tuning and reliance on (un)labeled data required by data-centric methods, while achieving superior MIS sizes and competitive runtime relative to their inference time. Additionally, a key advantage of pCQO-MIS is that, unlike exact and heuristic solvers, the runtime scales only with the number of nodes in the graph, not the number of edges.

Submitted: Jun 27, 2024