Paper ID: 2407.00958

Universal Approximation Theory: The Basic Theory for Transformer-based Large Language Models

Wei Wang, Qing Li

Language models have emerged as a critical area of focus in artificial intelligence, particularly with the introduction of groundbreaking innovations like ChatGPT. Large-scale Transformer networks have quickly become the leading approach for advancing natural language processing algorithms. Built on the Transformer architecture, these models enable interactions that closely mimic human communication and, equipped with extensive knowledge, can even assist in guiding human tasks. Despite their impressive capabilities and growing complexity, a key question remains-the theoretical foundations of large language models (LLMs). What makes Transformer so effective for powering intelligent language applications, such as translation and coding? What underlies LLMs' ability for In-Context Learning (ICL)? How does the LoRA scheme enhance the fine-tuning of LLMs? And what supports the practicality of pruning LLMs? To address these critical questions and explore the technological strategies within LLMs, we leverage the Universal Approximation Theory (UAT) to offer a theoretical backdrop, shedding light on the mechanisms that underpin these advancements.

Submitted: Jul 1, 2024