Paper ID: 2407.01036
Ranking by Lifts: A Cost-Benefit Approach to Large-Scale A/B Tests
Pallavi Basu, Ron Berman
A/B testers conducting large-scale tests prioritize lifts and want to be able to control false rejections of the null. This work develops a decision-theoretic framework for maximizing profits subject to false discovery rate (FDR) control. We build an empirical Bayes solution for the problem via the greedy knapsack approach. We derive an oracle rule based on ranking the ratio of expected lifts and the cost of wrong rejections using the local false discovery rate (lfdr) statistic. Our oracle decision rule is valid and optimal for large-scale tests. Further, we establish asymptotic validity for the data-driven procedure and demonstrate finite-sample validity in experimental studies. We also demonstrate the merit of the proposed method over other FDR control methods. Finally, we discuss an application to actual Optimizely experiments.
Submitted: Jul 1, 2024