Paper ID: 2407.02269

IFTT-PIN: A Self-Calibrating PIN-Entry Method

Kathryn McConkey, Talha Enes Ayranci, Mohamed Khamis, Jonathan Grizou

Personalising an interface to the needs and preferences of a user often incurs additional interaction steps. In this paper, we demonstrate a novel method that enables the personalising of an interface without the need for explicit calibration procedures, via a process we call self-calibration. A second-order effect of self-calibration is that an outside observer cannot easily infer what a user is trying to achieve because they cannot interpret the user's actions. To explore this security angle, we developed IFTT-PIN (If This Then PIN) as the first self-calibrating PIN-entry method. When using IFTT-PIN, users are free to choose any button for any meaning without ever explicitly communicating their choice to the machine. IFTT-PIN infers both the user's PIN and their preferred button mapping at the same time. This paper presents the concept, implementation, and interactive demonstrations of IFTT-PIN, as well as an evaluation against shoulder surfing attacks. Our study (N=24) shows that by adding self-calibration to an existing PIN entry method, IFTT-PIN statistically significantly decreased PIN attack decoding rate by ca. 8.5 times (p=1.1e-9), while only decreasing the PIN entry encoding rate by ca. 1.4 times (p=0.02), leading to a positive security-usability trade-off. IFTT-PIN's entry rate significantly improved 21 days after first exposure (p=3.6e-6) to the method, suggesting self-calibrating interfaces are memorable despite using an initially undefined user interface. Self-calibration methods might lead to novel opportunities for interaction that are more inclusive and versatile, a potentially interesting challenge for the community. A short introductory video is available at https://youtu.be/pP5sfniNRns.

Submitted: Jul 2, 2024