Paper ID: 2407.03695
M^3:Manipulation Mask Manufacturer for Arbitrary-Scale Super-Resolution Mask
Xinyu Yang, Xiaochen Ma, Xuekang Zhu, Bo Du, Lei Su, Bingkui Tong, Zeyu Lei, Jizhe Zhou
In the field of image manipulation localization (IML), the small quantity and poor quality of existing datasets have always been major issues. A dataset containing various types of manipulations will greatly help improve the accuracy of IML models. Images on the internet (such as those on Baidu Tieba's PS Bar) are manipulated using various techniques, and creating a dataset from these images will significantly enrich the types of manipulations in our data. However, images on the internet suffer from resolution and clarity issues, and the masks obtained by simply subtracting the manipulated image from the original contain various noises. These noises are difficult to remove, rendering the masks unusable for IML models. Inspired by the field of change detection, we treat the original and manipulated images as changes over time for the same image and view the data generation task as a change detection task. However, due to clarity issues between images, conventional change detection models perform poorly. Therefore, we introduced a super-resolution module and proposed the Manipulation Mask Manufacturer (MMM) framework. It enhances the resolution of both the original and tampered images, thereby improving image details for better comparison. Simultaneously, the framework converts the original and tampered images into feature embeddings and concatenates them, effectively modeling the context. Additionally, we created the Manipulation Mask Manufacturer Dataset (MMMD), a dataset that covers a wide range of manipulation techniques. We aim to contribute to the fields of image forensics and manipulation detection by providing more realistic manipulation data through MMM and MMMD. Detailed information about MMMD and the download link can be found at: the code and datasets will be made available.
Submitted: Jul 4, 2024