Paper ID: 2407.05063

Co-Scale Cross-Attentional Transformer for Rearrangement Target Detection

Haruka Matsuo, Shintaro Ishikawa, Komei Sugiura

Rearranging objects (e.g. vase, door) back in their original positions is one of the most fundamental skills for domestic service robots (DSRs). In rearrangement tasks, it is crucial to detect the objects that need to be rearranged according to the goal and current states. In this study, we focus on Rearrangement Target Detection (RTD), where the model generates a change mask for objects that should be rearranged. Although many studies have been conducted in the field of Scene Change Detection (SCD), most SCD methods often fail to segment objects with complex shapes and fail to detect the change in the angle of objects that can be opened or closed. In this study, we propose a Co-Scale Cross-Attentional Transformer for RTD. We introduce the Serial Encoder which consists of a sequence of serial blocks and the Cross-Attentional Encoder which models the relationship between the goal and current states. We built a new dataset consisting of RGB images and change masks regarding the goal and current states. We validated our method on the dataset and the results demonstrated that our method outperformed baseline methods on $F_1$-score and mean IoU.

Submitted: Jul 6, 2024