Paper ID: 2407.05087

Linear Attention Based Deep Nonlocal Means Filtering for Multiplicative Noise Removal

Xiao Siyao, Huang Libing, Zhang Shunsheng

Multiplicative noise widely exists in radar images, medical images and other important fields' images. Compared to normal noises, multiplicative noise has a generally stronger effect on the visual expression of images. Aiming at the denoising problem of multiplicative noise, we linearize the nonlocal means algorithm with deep learning and propose a linear attention mechanism based deep nonlocal means filtering (LDNLM). Starting from the traditional nonlocal means filtering, we employ deep channel convolution neural networks to extract the information of the neighborhood matrix and obtain representation vectors of every pixel. Then we replace the similarity calculation and weighted averaging processes with the inner operations of the attention mechanism. To reduce the computational overhead, through the formula of similarity calculation and weighted averaging, we derive a nonlocal filter with linear complexity. Experiments on both simulated and real multiplicative noise demonstrate that the LDNLM is more competitive compared with the state-of-the-art methods. Additionally, we prove that the LDNLM possesses interpretability close to traditional NLM.

Submitted: Jul 6, 2024