Paper ID: 2407.05357
On the power of data augmentation for head pose estimation
Michael Welter
Deep learning has been impressively successful in the last decade in predicting human head poses from monocular images. However, for in-the-wild inputs the research community relies predominantly on a single training set, 300W-LP, of semisynthetic nature without many alternatives. This paper focuses on gradual extension and improvement of the data to explore the performance achievable with augmentation and synthesis strategies further. Modeling-wise a novel multitask head/loss design which includes uncertainty estimation is proposed. Overall, the thus obtained models are small, efficient, suitable for full 6 DoF pose estimation, and exhibit very competitive accuracy.
Submitted: Jul 7, 2024