Paper ID: 2407.06450

Enhanced Model Robustness to Input Corruptions by Per-corruption Adaptation of Normalization Statistics

Elena Camuffo, Umberto Michieli, Simone Milani, Jijoong Moon, Mete Ozay

Developing a reliable vision system is a fundamental challenge for robotic technologies (e.g., indoor service robots and outdoor autonomous robots) which can ensure reliable navigation even in challenging environments such as adverse weather conditions (e.g., fog, rain), poor lighting conditions (e.g., over/under exposure), or sensor degradation (e.g., blurring, noise), and can guarantee high performance in safety-critical functions. Current solutions proposed to improve model robustness usually rely on generic data augmentation techniques or employ costly test-time adaptation methods. In addition, most approaches focus on addressing a single vision task (typically, image recognition) utilising synthetic data. In this paper, we introduce Per-corruption Adaptation of Normalization statistics (PAN) to enhance the model robustness of vision systems. Our approach entails three key components: (i) a corruption type identification module, (ii) dynamic adjustment of normalization layer statistics based on identified corruption type, and (iii) real-time update of these statistics according to input data. PAN can integrate seamlessly with any convolutional model for enhanced accuracy in several robot vision tasks. In our experiments, PAN obtains robust performance improvement on challenging real-world corrupted image datasets (e.g., OpenLoris, ExDark, ACDC), where most of the current solutions tend to fail. Moreover, PAN outperforms the baseline models by 20-30% on synthetic benchmarks in object recognition tasks.

Submitted: Jul 8, 2024