Paper ID: 2407.07024

Exploring Scalability of Self-Training for Open-Vocabulary Temporal Action Localization

Jeongseok Hyun, Su Ho Han, Hyolim Kang, Joon-Young Lee, Seon Joo Kim

The vocabulary size in temporal action localization (TAL) is limited by the scarcity of large-scale annotated datasets. To overcome this, recent works integrate vision-language models (VLMs), such as CLIP, for open-vocabulary TAL (OV-TAL). However, despite the success of VLMs trained on extensive datasets, existing OV-TAL methods still rely on human-labeled TAL datasets of limited size to train action localizers, limiting their generalizability. In this paper, we explore the scalability of self-training with unlabeled YouTube videos for OV-TAL. Our approach consists of two stages: (1) a class-agnostic action localizer is trained on a human-labeled TAL dataset to generate pseudo-labels for unlabeled videos, and (2) the large-scale pseudo-labeled dataset is then used to train the localizer. Extensive experiments demonstrate that leveraging web-scale videos in self-training significantly enhances the generalizability of an action localizer. Additionally, we identify limitations in existing OV-TAL evaluation schemes and propose a new benchmark for thorough assessment. Finally, we showcase the TAL performance of the large multimodal model Gemini-1.5 on our new benchmark. Code is released at this https URL.

Submitted: Jul 9, 2024