Paper ID: 2407.07351

Unity in Diversity: Multi-expert Knowledge Confrontation and Collaboration for Generalizable Vehicle Re-identification

Zhenyu Kuang, Hongyang Zhang, Lidong Cheng, Yinhao Liu, Yue Huang, Xinghao Ding

Generalizable vehicle re-identification (ReID) aims to enable the well-trained model in diverse source domains to broadly adapt to unknown target domains without additional fine-tuning or retraining. However, it still faces the challenges of domain shift problem and has difficulty accurately generalizing to unknown target domains. This limitation occurs because the model relies heavily on primary domain-invariant features in the training data and pays less attention to potentially valuable secondary features. To solve this complex and common problem, this paper proposes the two-stage Multi-expert Knowledge Confrontation and Collaboration (MiKeCoCo) method, which incorporates multiple experts with unique perspectives into Contrastive Language-Image Pretraining (CLIP) and fully leverages high-level semantic knowledge for comprehensive feature representation. Specifically, we propose to construct the learnable prompt set of all specific-perspective experts by adversarial learning in the latent space of visual features during the first stage of training. The learned prompt set with high-level semantics is then utilized to guide representation learning of the multi-level features for final knowledge fusion in the next stage. In this process of knowledge fusion, although multiple experts employ different assessment ways to examine the same vehicle, their common goal is to confirm the vehicle's true identity. Their collective decision can ensure the accuracy and consistency of the evaluation results. Furthermore, we design different image inputs for two-stage training, which include image component separation and diversity enhancement in order to extract the ID-related prompt representation and to obtain feature representation highlighted by all experts, respectively. Extensive experimental results demonstrate that our method achieves state-of-the-art recognition performance.

Submitted: Jul 10, 2024