Paper ID: 2407.07723
Understanding is Compression
Ziguang Li, Chao Huang, Xuliang Wang, Haibo Hu, Cole Wyeth, Dongbo Bu, Quan Yu, Wen Gao, Xingwu Liu, Ming Li
We have previously shown all understanding or learning are compression, under reasonable assumptions. In principle, better understanding of data should improve data compression. Traditional compression methodologies focus on encoding frequencies or some other computable properties of data. Large language models approximate the uncomputable Solomonoff distribution, opening up a whole new avenue to justify our theory. Under the new uncomputable paradigm, we present LMCompress based on the understanding of data using large models. LMCompress has significantly better lossless compression ratios than all other lossless data compression methods, doubling the compression ratios of JPEG-XL for images, FLAC for audios and H264 for videos, and tripling or quadrupling the compression ratio of bz2 for texts. The better a large model understands the data, the better LMCompress compresses.
Submitted: Jun 24, 2024