Paper ID: 2407.09346
A Preliminary Investigation on Flexible Singing Voice Synthesis Through Decomposed Framework with Inferrable Features
Lester Phillip Violeta, Taketo Akama
We investigate the feasibility of a singing voice synthesis (SVS) system by using a decomposed framework to improve flexibility in generating singing voices. Due to data-driven approaches, SVS performs a music score-to-waveform mapping; however, the direct mapping limits control, such as being able to only synthesize in the language or the singers present in the labeled singing datasets. As collecting large singing datasets labeled with music scores is an expensive task, we investigate an alternative approach by decomposing the SVS system and inferring different singing voice features. We decompose the SVS system into three-stage modules of linguistic, pitch contour, and synthesis, in which singing voice features such as linguistic content, F0, voiced/unvoiced, singer embeddings, and loudness are directly inferred from audio. Through this decomposed framework, we show that we can alleviate the labeled dataset requirements, adapt to different languages or singers, and inpaint the lyrical content of singing voices. Our investigations show that the framework has the potential to reach state-of-the-art in SVS, even though the model has additional functionality and improved flexibility. The comprehensive analysis of our investigated framework's current capabilities sheds light on the ways the research community can achieve a flexible and multifunctional SVS system.
Submitted: Jul 12, 2024