Paper ID: 2407.09520

Exploring the Impact of Hand Pose and Shadow on Hand-washing Action Recognition

Shengtai Ju, Amy R. Reibman

In the real world, camera-based application systems can face many challenges, including environmental factors and distribution shift. In this paper, we investigate how pose and shadow impact a classifier's performance, using the specific application of handwashing action recognition. To accomplish this, we generate synthetic data with desired variations to introduce controlled distribution shift. Using our synthetic dataset, we define a classifier's breakdown points to be where the system's performance starts to degrade sharply, and we show these are heavily impacted by pose and shadow conditions. In particular, heavier and larger shadows create earlier breakdown points. Also, it is intriguing to observe model accuracy drop to almost zero with bigger changes in pose. Moreover, we propose a simple mitigation strategy for pose-induced breakdown points by utilizing additional training data from non-canonical poses. Results show that the optimal choices of additional training poses are those with moderate deviations from the canonical poses with 50-60 degrees of rotation.

Submitted: Jun 19, 2024