Paper ID: 2407.11678
Theoretical Insights into CycleGAN: Analyzing Approximation and Estimation Errors in Unpaired Data Generation
Luwei Sun, Dongrui Shen, Han Feng
In this paper, we focus on analyzing the excess risk of the unpaired data generation model, called CycleGAN. Unlike classical GANs, CycleGAN not only transforms data between two unpaired distributions but also ensures the mappings are consistent, which is encouraged by the cycle-consistency term unique to CycleGAN. The increasing complexity of model structure and the addition of the cycle-consistency term in CycleGAN present new challenges for error analysis. By considering the impact of both the model architecture and training procedure, the risk is decomposed into two terms: approximation error and estimation error. These two error terms are analyzed separately and ultimately combined by considering the trade-off between them. Each component is rigorously analyzed; the approximation error through constructing approximations of the optimal transport maps, and the estimation error through establishing an upper bound using Rademacher complexity. Our analysis not only isolates these errors but also explores the trade-offs between them, which provides a theoretical insights of how CycleGAN's architecture and training procedures influence its performance.
Submitted: Jul 16, 2024