Paper ID: 2407.12880
Cross-Modal Augmentation for Few-Shot Multimodal Fake News Detection
Ye Jiang, Taihang Wang, Xiaoman Xu, Yimin Wang, Xingyi Song, Diana Maynard
The nascent topic of fake news requires automatic detection methods to quickly learn from limited annotated samples. Therefore, the capacity to rapidly acquire proficiency in a new task with limited guidance, also known as few-shot learning, is critical for detecting fake news in its early stages. Existing approaches either involve fine-tuning pre-trained language models which come with a large number of parameters, or training a complex neural network from scratch with large-scale annotated datasets. This paper presents a multimodal fake news detection model which augments multimodal features using unimodal features. For this purpose, we introduce Cross-Modal Augmentation (CMA), a simple approach for enhancing few-shot multimodal fake news detection by transforming n-shot classification into a more robust (n $\times$ z)-shot problem, where z represents the number of supplementary features. The proposed CMA achieves SOTA results over three benchmark datasets, utilizing a surprisingly simple linear probing method to classify multimodal fake news with only a few training samples. Furthermore, our method is significantly more lightweight than prior approaches, particularly in terms of the number of trainable parameters and epoch times. The code is available here: \url{https://github.com/zgjiangtoby/FND_fewshot}
Submitted: Jul 16, 2024