Paper ID: 2407.13372

Any Image Restoration with Efficient Automatic Degradation Adaptation

Bin Ren, Eduard Zamfir, Yawei Li, Zongwei Wu, Danda Pani Paudel, Radu Timofte, Nicu Sebe, Luc Van Gool

With the emergence of mobile devices, there is a growing demand for an efficient model to restore any degraded image for better perceptual quality. However, existing models often require specific learning modules tailored for each degradation, resulting in complex architectures and high computation costs. Different from previous work, in this paper, we propose a unified manner to achieve joint embedding by leveraging the inherent similarities across various degradations for efficient and comprehensive restoration. Specifically, we first dig into the sub-latent space of each input to analyze the key components and reweight their contributions in a gated manner. The intrinsic awareness is further integrated with contextualized attention in an X-shaped scheme, maximizing local-global intertwining. Extensive comparison on benchmarking all-in-one restoration setting validates our efficiency and effectiveness, i.e., our network sets new SOTA records while reducing model complexity by approximately -82% in trainable parameters and -85\% in FLOPs. Our code will be made publicly available at:https://github.com/Amazingren/AnyIR.

Submitted: Jul 18, 2024