Paper ID: 2407.13760

Neural Network Tire Force Modeling for Automated Drifting

Nicholas Drake Broadbent, Trey Weber, Daiki Mori, J. Christian Gerdes

Automated drifting presents a challenge problem for vehicle control, requiring models and control algorithms that can precisely handle nonlinear, coupled tire forces at the friction limits. We present a neural network architecture for predicting front tire lateral force as a drop-in replacement for physics-based approaches. With a full-scale automated vehicle purpose-built for the drifting application, we deploy these models in a nonlinear model predictive controller tuned for tracking a reference drifting trajectory, for direct comparisons of model performance. The neural network tire model exhibits significantly improved path tracking performance over the brush tire model in cases where front-axle braking force is applied, suggesting the neural network's ability to express previously unmodeled, latent dynamics in the drifting condition.

Submitted: Jul 18, 2024