Paper ID: 2407.14039

BERTer: The Efficient One

Pradyumna Saligram, Andrew Lanpouthakoun

We explore advanced fine-tuning techniques to boost BERT's performance in sentiment analysis, paraphrase detection, and semantic textual similarity. Our approach leverages SMART regularization to combat overfitting, improves hyperparameter choices, employs a cross-embedding Siamese architecture for improved sentence embeddings, and introduces innovative early exiting methods. Our fine-tuning findings currently reveal substantial improvements in model efficiency and effectiveness when combining multiple fine-tuning architectures, achieving a state-of-the-art performance score of on the test set, surpassing current benchmarks and highlighting BERT's adaptability in multifaceted linguistic tasks.

Submitted: Jul 19, 2024