Paper ID: 2407.15176

ReAttention: Training-Free Infinite Context with Finite Attention Scope

Xiaoran Liu, Ruixiao Li, Qipeng Guo, Zhigeng Liu, Yuerong Song, Kai Lv, Hang Yan, Linlin Li, Qun Liu, Xipeng Qiu

The long-context capability of the Large Language Models (LLM) has made significant breakthroughs, but the maximum supported context length remains a critical bottleneck limiting their practical applications. The constraint of context length in LLMs arises from the self-attention mechanism, which cannot effectively and efficiently capture the semantic relationships within infinitely long contexts via the limited pre-trained positional information and attention scope. In this work, we propose \textbf{ReAttention}, a training-free approach enabling LLM based on the self-attention mechanism to support an infinite context with a finite attention scope under sufficient memory resources. ReAttention performs the position-agnostic top-$k$ attention before the ordinary position-aware self-attention, freeing LLMs from the length extrapolation issue. We validate the performance of ReAttention on the LongBench, L-Eval, and InfiniteBench and demonstrate that it is on par with traditional methods. Furthermore, we also apply ReAttention on mainstream LLMs, including LLaMA3.1-8B and Mistral-v0.3-7B, enabling them to support context lengths of at least 1M and even expanding the context length of LLaMA3.2-3B-chat by 128$\times$ to 4M without any further training in Needle-In-A-Haystack tests. We also improve the efficiency of ReAttention with Triton and achieve an efficient extrapolation without additional overhead.

Submitted: Jul 21, 2024