Paper ID: 2407.15882
Evaluation of deep learning models for Australian climate extremes: prediction of streamflow and floods
Siddharth Khedkar, R. Willem Vervoort, Rohitash Chandra
In recent years, climate extremes such as floods have created significant environmental and economic hazards for Australia, causing damage to the environment and economy and losses of human and animal lives. An efficient method of forecasting floods is crucial to limit this damage. Techniques for flood prediction are currently based on hydrological, and hydrodynamic (physically-based) numerical models. Machine learning methods that include deep learning offer certain advantages over conventional physically based approaches, including flexibility and accuracy. Deep learning methods have been promising for predicting small to medium-sized climate extreme events over a short time horizon; however, large flooding events present a critical challenge. We present an ensemble-based machine learning approach that addresses large-scale extreme flooding challenges using a switching mechanism motivated by extreme-value theory for long-short-term-memory (LSTM) deep learning models. We use a multivariate and multi-step time-series prediction approach to predict streamflow for multiple days ahead in the major catchments of Australia. The ensemble framework also employs static information to enrich the time-series information, allowing for regional modelling across catchments. Our results demonstrate enhanced prediction of streamflow extremes, with notable efficacy for large flooding scenarios in the selected Australian catchments. Through comparative analysis, our methodology underscores the potential for deep learning models to revolutionise flood forecasting across diverse regions.
Submitted: Jul 20, 2024