Paper ID: 2407.16704

Applying generative neural networks for fast simulations of the ALICE (CERN) experiment

Maksymilian Wojnar

This thesis investigates the application of state-of-the-art advances in generative neural networks for fast simulation of the Zero Degree Calorimeter (ZDC) neutron detector in the ALICE experiment at CERN. Traditional simulation methods using the GEANT Monte Carlo toolkit, while accurate, are computationally demanding. With increasing computational needs at CERN, efficient simulation techniques are essential. The thesis provides a comprehensive literature review on the application of neural networks in computer vision, fast simulations using machine learning, and generative neural networks in high-energy physics. The theory of the analyzed models is also discussed, along with technical aspects and the challenges associated with a practical implementation. The experiments evaluate various neural network architectures, including convolutional neural networks, vision transformers, and MLP-Mixers, as well as generative frameworks such as autoencoders, generative adversarial networks, vector quantization models, and diffusion models. Key contributions include the implementation and evaluation of these models, a significant improvement in the Wasserstein metric compared to existing methods with a low generation time of 5 milliseconds per sample, and the formulation of a list of recommendations for developing models for fast ZDC simulation. Open-source code and detailed hyperparameter settings are provided for reproducibility. Additionally, the thesis outlines future research directions to further enhance simulation fidelity and efficiency.

Submitted: Jul 10, 2024