Paper ID: 2407.16740

PLM-Net: Perception Latency Mitigation Network for Vision-Based Lateral Control of Autonomous Vehicles

Aws Khalil, Jaerock Kwon

This study introduces the Perception Latency Mitigation Network (PLM-Net), a novel deep learning approach for addressing perception latency in vision-based Autonomous Vehicle (AV) lateral control systems. Perception latency is the delay between capturing the environment through vision sensors (e.g., cameras) and applying an action (e.g., steering). This issue is understudied in both classical and neural-network-based control methods. Reducing this latency with powerful GPUs and FPGAs is possible but impractical for automotive platforms. PLM-Net comprises the Base Model (BM) and the Timed Action Prediction Model (TAPM). BM represents the original Lane Keeping Assist (LKA) system, while TAPM predicts future actions for different latency values. By integrating these models, PLM-Net mitigates perception latency. The final output is determined through linear interpolation of BM and TAPM outputs based on real-time latency. This design addresses both constant and varying latency, improving driving trajectories and steering control. Experimental results validate the efficacy of PLM-Net across various latency conditions. Source code: https://github.com/AwsKhalil/oscar/tree/devel-plm-net.

Submitted: Jul 23, 2024